Neuropsychological Correlates of Capacity Determinations in Alzheimer Disease: Implications for Assessment

Barton W. Palmer, Ph.D., Kerry A. Ryan, M.A., H. Myra Kim, Sc.D., Jason H. Karlawish, M.D., Paul S. Appelbaum, M.D., Scott Y.H. Kim, M.D., Ph.D.

Objectives: To explore the neuropsychological correlates of the capacity to consent to research and to appoint a research proxy among persons with Alzheimer disease.

Design, Setting, and Participants: Interview study of 77 persons with Alzheimer disease recruited through an Alzheimer disease research center and a memory disorder clinic. Measurements: The capacity to consent to two research scenarios (a drug randomized clinical trial and a neurosurgical clinical trial) and the capacity to appoint a research proxy were determined by five experienced consultation psychiatrists who rendered categorical judgments based on videotaped interviews of the MacArthur Competence Assessment Tool—Clinical Research and the Capacity to Appoint a Proxy Assessment. Mattis Dementia Rating Scale—Second Edition was used to assess neuropsychological functioning. Results: The capacity to appoint a proxy and to consent to the drug randomized clinical trial, as determined by a majority or greater opinion of the five-psychiatrist panel, was predicted by Conceptualization and Initiation/Perseveration subscales, whereas the capacity to consent to a neurosurgical randomized clinical trial was predicted by the Memory subscale. Furthermore, the more lenient individual psychiatrists’ judgments were predicted by the Conceptualization subscale, whereas the stricter psychiatrists’ judgments were predicted by the Memory subscale. Conclusions: How experienced psychiatrists view the capacity of patients with Alzheimer disease for consenting to research and for appointing a proxy may be related to the patients’ conceptualization and memory functioning. More explicit and standardized guidance on the role of short-term memory in capacity determinations may be useful. (Am J Geriatr Psychiatry 2013; 21:373–381)

Key Words: Alzheimer disease, decision-making capacity, neuropsychology

Received April 28, 2011; revised October 6, 2011; accepted October 20, 2011. From the Department of Psychiatry, University of California, San Diego (BWP); Center for Bioethics and Social Sciences in Medicine (KAR, SYHK), Center for Statistical Consultation and Research (HMK), and Department of Psychiatry (SYHK), University of Michigan, Ann Arbor; Departments of Medicine and Medical Ethics, Division of Geriatrics, Alzheimer’s Disease Center, Center for Bioethics, and the Leonard Davis Institute for Health Economics, University of Pennsylvania, Philadelphia (JHK); and Division of Law, Ethics, and Psychiatry, Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York (PSA). Send correspondence and reprint requests to Scott Y. H. Kim, M.D., Ph.D., 2800 Plymouth, Building 16, 422W, Ann Arbor, MI 48109. e-mail: scottkim@med.umich.edu

© 2013 American Association for Geriatric Psychiatry
http://dx.doi.org/10.1016/j.jagp.2012.11.008
Alzheimer disease (AD) is an incurable and devastating illness. The number of persons with AD worldwide is expected to reach 81.1 million by 2040.1 Thus, clinical research with persons suffering from AD is a public health priority, but such research raises the problem of involving persons with impaired decision-making capacity. In response, the study of decision-making capacity in persons with dementia has grown steadily,2 including the impact of AD on decisional capacity,3–6 the neuropsychological correlates of decisional abilities,7–12 and the nature of capacity judgments made by expert evaluators.13–17

We recently conducted a study examining two types of decision-making capacity constructs involving AD patients, regarding three different situations of decision making—the capacity to appoint a proxy and the capacity to consent to two different randomized controlled trials of varying risk profiles and demand characteristics.16,18 (For convenience, we refer to three specific “capacities,” although they exemplify two different types of capacity.) In this article, we explore the relationship between neuropsychological domains and these three different specific decision-making capacities as determined by categorical judgments of expert clinicians to provide clues for future research into two issues. First, examining the neuropsychological predictors of incapacity should increase our understanding of the phenomena of incapacity and this could, for example, provide clues to whether and how remediation might be targeted. Thus, using the majority decisions of a five-person expert judge panel as a provisional “gold standard” for capacity, we examine the neuropsychological predictors of the three decision-making capacities. Second, because there is considerable variability even among experienced psychiatrists’ categorical judgments of capacity, we explore whether the neuropsychological correlates of individual capacity evaluator’s judgments may help explain the variability. Earnst and colleagues7 and Marson and colleagues14 have shown, for example, that different neuropsychological predictors are associated with various rates of incompetency judgments made by physicians. Such knowledge could provide clues for future research to enhance reliability of capacity judgments.

METHODS

Subjects

The subjects were persons with possible or probable AD by NINCDS criteria19 recruited for a multisite study comparing the capacity to appoint a proxy decision maker for research consent and the capacity to give informed consent for two hypothetical research studies of varying risks and benefit.18 Seventy-seven of 84 subjects from two of the study sites were administered the Mattis Dementia Rating Scale—Second Edition (DRS-2)20 in addition to the capacity interviews (seven subjects were unable or unwilling to complete the DRS-2) and are the subjects of this article. The study was reviewed and approved by the institutional review board at the University of Michigan. Given the minimal risk of this interview study, the subjects provided their own informed consent when determined to be capable by the interviewer; otherwise, a surrogate gave permission in addition to subject assent.

Measures

The DRS-2 is a widely used assessment of cognitive abilities in individuals with mild to severe brain dysfunction.20 In addition to the overall total score (with a potential range of 0–144 points; lower scores indicating worse cognitive functioning), the DRS-2 has the following five subscales: 1) Attention (0–37 points) measures the ability to perform auditory–visual and verbal–nonverbal attention tasks; 2) Initiation/Perseveration (0–37 points) measures verbal initiation and articulation, and oral–verbal and graphomotor skills; 3) Construction (0–6 points) measures the ability to reproduce basic visual designs and to write one’s own name; 4) Conceptualization (0–39 points) measures the ability to identify visual and verbal similarities and differences; and 5) Memory (0–25 points) measures environmental and time orientation, short-term verbal recall, and verbal and visual recognition memory.

The MacArthur Competence Assessment Tool–Clinical Research (MacCAT-CR) is the most widely used instrument for assessing the abilities relevant to capacity for informed consent to research and has been adapted and validated for use in persons with
depression, schizophrenia, and dementia, among other disorders.3,21,22 It has excellent content validity, intrarater reliability, and good test–retest reliability.3,23,24 It assesses the range of abilities relevant to capacity for giving informed consent to research according to the four-abilities model of decision-making capacity: 1) understanding, 2) appreciation, 3) reasoning, and 4) expressing a choice.23 Two versions of the instrument were used on the basis of different research scenarios of varying complexity and risk/benefit ratios18: 1) a randomized clinical trial of a medication for AD (drug RCT) and 2) a randomized placebo-controlled (sham surgery) neurosurgical trial of cell transplantation for AD (neurosurgical RCT).

The Capacity to Appoint a Proxy Assessment (CAPA), an instrument specifically developed by our team, assesses the capacity to appoint a proxy decision maker regarding participation in research. The CAPA also follows the four-abilities model25 and has a high internal consistency (Cronbach’s \(\alpha = 0.87 \)) and excellent intrarater reliability (intraclass correlation coefficients = 0.93–0.99), as described elsewhere.18

Procedures

Subjects were administered the three capacity interviews during two in-home visits approximately 2 weeks apart. During the first visit, the CAPA and one of the MacCAT-CR interviews (randomly chosen) were conducted; the second MacCAT-CR and the DRS-2 were interviews conducted during the second visit. Each capacity interview was video-recorded. The DRS-2 administration was not video-recorded.

The MacCAT-CR and CAPA yield subscale scores but do not, by themselves, yield categorizations of capacity or incapacity; a capacity evaluator must exercise judgment in applying the data for the given context to yield a capacity status for each subject.26 In this study, five consultation psychiatrists, recruited from the membership of the Academy of Psychosomatic Medicine, were asked to make capacity judgments on the basis of the video-recorded capacity interviews. Consultation psychiatrists frequently perform capacity evaluations in the hospital setting.2 The psychiatrist judges rated all three capacity interviews for each subject (reviews of the interviews of a given subject were separated by several months). Each judge’s capacity determination was made on a 4-point scale regarding the subject’s decisional capacity (definitely capable, probably capable, probably not capable, and definitely not capable). Details of the expert judge evaluation procedures are extensively discussed elsewhere.16,18

Analyses

Analyses were conducted using STATA 10.1 (StataCorp LP, College Station, TX). The subjects’ capacity status was dichotomized by combining “probably” and “definitely” judgments of the expert judges26 and used as the dependent variable for all models. For each of the three decision-making capacities (i.e., the capacity to appoint a research proxy, to consent to the drug RCT, and to consent to the neurosurgical RCT), multiple logistic regression models were used to examine the neuropsychological predictors of the capacity status. We constructed six models for each decision-making capacity. The first model used the capacity judgments of the majority of the five expert judges as the dependent variable. Five additional models were constructed with each of the five individual judge’s capacity determinations as the dependent variable, for each type of decision-making capacity. For all of the models, the DRS-2 subscale scores (Attention, Initiation/Perseveration, Construction, Conceptualization, and Memory) were the independent variables, and age and gender were added as covariates, with all independent variables added simultaneously. The DRS-2 subscale scores had correlation coefficients ranging from 0.21 between Construction and Memory subscales to 0.63 between Conceptualization and Initiation/Preservation subscales. Education years and MMSE level were not used as covariates to avoid removing the variance that was the focus of the analysis. Significance was defined as \(p < 0.05 \) (two-tailed) for all analyses.

In all of the logistic models, we standardized each of the five DRS subscales by the observed standard deviation (SD) to ensure that the meaning of the estimated odds ratios (ORs) was comparable across the five DRS subscales, that is, as the OR associated with 1-SD increase in each subscale rather than as the OR associated with one-point increase in each subscale. This was done because the DRS-2 subscales have different ranges of possible scores so that the interpretation of effect sizes based on change in scores could be misleading.
RESULTS

Table 1 summarizes subjects’ demographic and cognitive characteristics.

Five-Psychiatrist Panel’s Capacity Determinations and Neuropsychological Performance

Per the determinations of the majority opinion in the five-judge panel, 60% of participants had capacity to appoint a proxy, 43% had capacity to consent to a randomized drug trial, and 16% had capacity to consent to a randomized neurosurgical trial. Table 2 displays the neuropsychological predictors of each of the three decision-making capacities as determined by the five-judge panel.

The five-judge panel’s determinations of capacity to appoint a research proxy and capacity to consent to the lower-risk research scenario (Drug RCT) are predicted by the Conceptualization and Initiation/Perseveration subscales, with particularly high ORs associated with the Conceptualization subscale. For the capacity to consent to the neurosurgical trial, although the Conceptualization subscale showed the highest OR (5.49), it was not statistically significant (95% CI = 0.64–46.94; Wald χ² [1] = 2.42; p = 0.12), whereas the OR associated with Memory subscale was significant.

Individual Psychiatrist’s Judgments and Neuropsychological Performance

As shown in Table 3, the proportion of subjects judged to have capacity varied considerably among the expert judges, with a range of 49%–83% (depending on the expert) of subjects being judged capable of appointing a research proxy, 18%–70% of subjects being judged capable of consenting to the drug RCT, and 8%–39% of subjects being judged capable of consenting to the neurosurgical RCT. Table 3 summarizes the relationship between significant neuropsychological domains of the DRS-2 subscales and individual expert’s capacity judgments for the three capacities.

For the capacity to appoint a research proxy, performance on the Conceptualization subscale was a significant predictor for all of the judges’ determinations whereas Memory and Initiation/Perseveration subscales were predictors for two judges and the Construction subscale for one expert’s judgment.

Table 1. Participant Characteristics (N = 77)

<table>
<thead>
<tr>
<th>Demographics</th>
<th>n (%) or Mean ± SD</th>
<th>Median (25th, 75th Percentile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>38 (49.4)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>76 (98.7)</td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td>74.8 ± 9.8</td>
<td></td>
</tr>
<tr>
<td>Education, years</td>
<td>15.2 ± 3.2</td>
<td></td>
</tr>
<tr>
<td>MMSE score (potential range = 0–30)</td>
<td>20.5 ± 5.1</td>
<td></td>
</tr>
<tr>
<td><12</td>
<td>6 (7.8)</td>
<td></td>
</tr>
<tr>
<td>12–17</td>
<td>11 (14.3)</td>
<td></td>
</tr>
<tr>
<td>18–25</td>
<td>37 (48.1)</td>
<td></td>
</tr>
<tr>
<td>24+</td>
<td>23 (29.9)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DRS (potential range)</th>
<th>Mean ± SD</th>
<th>Median (25th, 75th Percentile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRS total (0–144)</td>
<td>106.5 ± 17.7</td>
<td>109 (95, 119)</td>
</tr>
<tr>
<td>DRS Attention (0–37)</td>
<td>33.6 ± 3.0</td>
<td>35 (32, 36)</td>
</tr>
<tr>
<td>DRS Initiation/Perseveration (0–37)</td>
<td>22.0 ± 8.1</td>
<td>22 (16, 27)</td>
</tr>
<tr>
<td>DRS Construction (0–6)</td>
<td>5.1 ± 1.6</td>
<td>6 (5, 6)</td>
</tr>
<tr>
<td>DRS Conceptualization (0–39)</td>
<td>35.4 ± 4.9</td>
<td>35 (31, 37)</td>
</tr>
<tr>
<td>DRS Memory (0–25)</td>
<td>12.4 ± 4.5</td>
<td>13 (10, 15)</td>
</tr>
</tbody>
</table>

Table 2. Relationship Between Performance on DRS-2 Subscales and Five-Judge Panel Categorical Capacity Judgments (N = 77)

<table>
<thead>
<tr>
<th>DRS Domains</th>
<th>Capacity to Appoint a Proxy, 60% Judged to Have Capacity</th>
<th>Capacity to Consent to Drug RCT, 43% Judged to Have Capacity</th>
<th>Capacity to Consent to Neurosurgical RCT, 16% Judged to Have Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention</td>
<td>1.28 (0.38–4.27; p = 0.04)</td>
<td>0.49 (0.15–1.59; p = 1.41)</td>
<td>0.38 (0.08–1.82; p = 1.46)</td>
</tr>
<tr>
<td>Initiation/Perseveration</td>
<td>3.43 (1.05–11.18; 4.18; p = 0.04)</td>
<td>2.85 (1.09–7.44; 4.57; p = 0.03)</td>
<td>3.08 (0.70–13.47; 2.23)</td>
</tr>
<tr>
<td>Construction</td>
<td>0.57 (0.19–1.75; p = 0.96)</td>
<td>0.53 (0.20–1.41; p = 1.64)</td>
<td>1.08 (0.36–3.21; p = 0.17)</td>
</tr>
<tr>
<td>Conceptualization</td>
<td>19.58 (3.14–122.31; 10.13; p = 0.001)</td>
<td>14.91 (2.73–81.34; 9.75; p = 0.002)</td>
<td>5.49 (0.64–46.94; 2.42)</td>
</tr>
<tr>
<td>Memory</td>
<td>2.71 (0.78–9.42; 2.47)</td>
<td>1.43 (0.58–5.49; 0.60)</td>
<td>4.52 (1.24–16.44; 5.23; p = 0.02)</td>
</tr>
</tbody>
</table>

Notes: Standardized multiple logistic regression model. All Wald χ² tests with df = 1. Covariates include age and gender. Significant ORs are given in bold font (p < 0.05).
<table>
<thead>
<tr>
<th>Judge (A–E)—% Judged to Have Capacity</th>
<th>Predictors</th>
<th>OR (95% CI; Wald χ²)</th>
<th>Judge (A–E)—% Judged to Have Capacity</th>
<th>Predictors</th>
<th>OR (95% CI; Wald χ²)</th>
<th>Judge (A–E)—% Judged to Have Capacity</th>
<th>Predictors</th>
<th>OR (95% CI; Wald χ²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A—83%</td>
<td>Conceptualization</td>
<td>3.04 (1.05–8.83; 4.19; p = 0.04)</td>
<td>A—70%</td>
<td>Conceptualization</td>
<td>2.84 (1.14–7.07; 5.05; p = 0.03)</td>
<td>A—39%</td>
<td>Conceptualization</td>
<td>11.61 (2.38–56.58; 9.21; p = 0.002)</td>
</tr>
<tr>
<td></td>
<td>Memory</td>
<td>4.18 (1.15–15.46; 4.59; p = 0.03)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B—57%</td>
<td>Initiation/Perseveration</td>
<td>3.10 (1.07–9.01; 4.32; p = 0.04)</td>
<td>D—51%</td>
<td>Conceptualization</td>
<td>5.24 (1.54–17.84; 7.02; p = 0.01)</td>
<td>B—26%</td>
<td>Conceptualization</td>
<td>4.30 (1.06–17.47; 4.15; p = 0.04)</td>
</tr>
<tr>
<td></td>
<td>Conceptualization</td>
<td>4.64 (1.39–15.54; 6.21; p = 0.01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C—55%</td>
<td>Initiation/Perseveration</td>
<td>3.20 (1.27–8.09; 6.08; p = 0.01)</td>
<td>B—44%</td>
<td>Conceptualization</td>
<td>9.65 (2.31–40.28; 9.68; p = 0.002)</td>
<td>D—21%</td>
<td>Memory</td>
<td>3.60 (1.28–10.15; 5.86; p = 0.02)</td>
</tr>
<tr>
<td></td>
<td>Conceptualization</td>
<td>5.59 (1.23–10.50; 5.44; p = 0.02)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D—49%</td>
<td>Construction</td>
<td>0.22 (0.07–0.70; 6.55; p = 0.01)</td>
<td>E—33%</td>
<td>Conceptualization</td>
<td>4.53 (1.06–17.71; 4.16; p = 0.04)</td>
<td>E—14%</td>
<td>Memory</td>
<td>4.30 (1.21–15.29; 5.08; p = 0.02)</td>
</tr>
<tr>
<td></td>
<td>Conceptualization</td>
<td>12.83 (2.62–62.88; 9.91; p = 0.002)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E—49%</td>
<td>Conceptualization</td>
<td>4.53 (1.38–14.85; 6.21; p = 0.01)</td>
<td>C—18%</td>
<td>Memory</td>
<td>6.02 (1.56–23.20; 6.79; p = 0.01)</td>
<td>C—8%</td>
<td>Memory</td>
<td>22.04 (1.54–315.96; 5.18; p = 0.02)</td>
</tr>
<tr>
<td></td>
<td>Memory</td>
<td>3.76 (1.52–10.76; 6.12; p = 0.01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*aOnly significant (p < 0.05) DRS predictors listed.

bStandardized multiple logistic regression model. All Wald χ² tests with df = 1. Covariates include age and gender.
DISCUSSION

In this study, we examined the relationship between AD patients’ performance on various neuropsychological domains and categorical determinations of capacity as given by expert clinicians (taken individually and as a group) for three different situations of decision-making capacity in the research context. The main findings are as follows.

First, across the three different capacities, individual capacity evaluators who are inclined to be “strict” and demand higher levels of functioning for the subjects to be deemed capable may be especially affected by the dense short-term memory deficits characteristic of AD. Because memory impairment tends to occur early in AD, this would translate into a high proportion of subjects being deemed incapable. In contrast, the more lenient judges’ determinations are significantly predicted by performance on the Conceptualization subscale. Although a comparison is difficult due to differing methodologies, our results seem consistent with previous findings of Marson and colleagues,27 who found that delayed verbal recall (a component of verbal memory) predicted the strictest capacity judgments and simple executive function predicted more lenient capacity judgments.

Second, the expert panel’s judgments of capacity are predicted by the Memory subscale for capacity to consent to the higher-risk scenario and by the Conceptualization and Initiation/Perseveration subscales for the lower-risk scenario and for the scenario of appointing a research proxy. This seems consistent with the earlier finding that when a higher threshold of capacity is applied to persons with AD, the area of early, severe impairment such as memory may predict incapacity judgments of experts.18

Third, unlike the capacity to consent to the drug RCT, the capacity judgments of the strictest judge (Judge C with only 18% judged to have capacity) were significantly predicted by the Memory subscale. However, the other four judges’ capacity judgments were predicted by the Conceptualization subscale. For the capacity to consent to the neurosurgical RCT, the Memory subscale significantly predicted the judgments of the three strictest judges and Conceptualization predicted the two most lenient judges.

For the capacity to consent to the drug RCT, the capacity judgments of the strictest judge (Judge C with only 18% judged to have capacity) were significantly predicted by the Memory subscale. However, the other four judges’ capacity judgments were predicted by the Conceptualization subscale. For the capacity to consent to the neurosurgical RCT, the Memory subscale significantly predicted the judgments of the three strictest judges and Conceptualization predicted the two most lenient judges.

Third, unlike the capacity to consent to the two research scenarios, individual psychiatrist’s judgments of capacity to appoint a proxy were predicted by neuropsychological subscales but not in any consistent manner relative to “strictness” of judgments. This may reflect the fact that capacity to appoint a proxy is a relatively unexplored concept both conceptually and empirically, and the experts’ individual judgments may show considerable variability as a result. At least one judge in our study commented that his categorical judgments regarding this capacity evolved over the course of the 36 months of the study.16

These findings raise some intriguing possibilities for interpretation. In a previous report,16 we noted that there were two recurring questions raised by the expert judges in their written comments accompanying their capacity determinations and during a post-study meeting. One question was “How long must the person retain the information to be deemed to have intact capacity?” We noted that the lack of a widely accepted answer to this question may have contributed to variability in judgment. Another recurring theme among the judges was “Do the subjects show that they grasp ‘the big picture?’” As one judge put it, “If you don’t understand the concept, the details won’t save you.” Although all of the judges felt that this was an important issue, what constitutes “grasping the big picture” may have varied among the judges because there are currently no uniform guidelines on how to use such a criterion. It is possible, therefore, that our findings regarding the neuropsychological predictors of capacity judgments reflect the variability among the judges regarding these two issues. Because many (albeit not all) of the items on the DRS-2 Memory subscale relate to the ability to retain information, it is plausible that the judgments of those who felt that subjects ought to “retain information” for a relatively longer period would be best predicted by the Memory subscale. As “rapid forgetting” is one of the hallmarks of AD,28 one might also expect that those judges placing emphasis on information retention would tend to rate a relatively high proportion of AD patients as having impaired capacity. In contrast, other judges may have instead focused on the “getting the big picture” issue, which may be more related to abilities associated with abstract thinking and executive function, such as assessed in the DRS-2 Conceptualization subscale.
Although executive functions are also commonly affected in AD, those deficits may be less salient than those in memory, at least in the early/milder stages of the illness, and thus judges who emphasize “the big picture” over memory may seem more lenient when evaluating the capacity of AD patients.

Our findings may also have implications for improving the decision-making abilities of persons with dementia. For example, if one accepts the view that long-term retention of information is not a necessity for capacity, a view that is explicitly adopted in the laws of some nations, then decision aids that accommodate more limited memory may be useful in assessing the decisional capacity of AD patients. A recent study by Rubright and colleagues found that a memory and organizational aid may in fact improve the performance of AD patients on capacity measures related to an early-phase drug trial.

There are, however, important limitations to our conclusions. First, this was a small, exploratory study intended to generate hypotheses rather than to test them, and we allowed increased potential for Type I errors involved in multiple statistical tests when examining results of individual expert judges. Thus, the positive findings should be seen as provisional and suggestive (because there is a greater chance of a false-positive finding), requiring further investigation, rather than definitive. Second, the capacity judgments studied were for the research context, which is still a relatively new area of practice. Thus, generalizing to the treatment context should be done cautiously. Third, our judges made their decisions under somewhat artificial conditions because they did not follow the usual procedure of capacity determination, which would have involved actual interviews with individualized probing of unclear areas (rather than just viewing videos) and the availability of more background clinical information.

Finally, the DRS-2 may have limitations in identifying differential influence of specific cognitive domains. For instance, the Construction subscale has a potential range of only 7 points (0–6 points), whereas the Conceptualization subscale has a potential range of 40 points (0–39 points). Although effect sizes can be standardized for interpretation, the differential subscale length may affect the reliability of each subscale, potentially limiting the magnitude of association due to psychometric reasons. The subscales may also have differential sensitivity to impairment in their respective targeted constructs so that conclusions about differential associations must be provisional.

A more comprehensive neuropsychological battery that is designed to be more sensitive to differences in the normal range of cognitive functioning might be used in the future to investigate more definitively the possibility of specific neuropsychological findings. However, the presently observed pattern of findings seems at least conceptually coherent in that they match what might be expected, given what is known about the cognitive deficits associated with AD, as well as the cognitive operations likely to be most critical for competent decision making. These are clearly issues warranting further research.

CONCLUSIONS

The assessment of decision-making capacity is currently guided by broad principles and standards. In applying these standards, capacity evaluators exercise considerable clinical judgment and may do so in varying ways. One important issue in evaluating persons with AD is the role that different degrees of memory impairment ought to play in determining the patient’s capacity status. Sometimes it may be sufficient for a person to retain information long enough to make an informed decision, whereas in other situations, it may be ethically more relevant for the person to be able to store and retrieve that information. The amount of risk at issue, as well as the nature of the participation in research (e.g., one-time procedure versus a long-term longitudinal commitment), may need to be taken into account in weighing the importance of memory. It seems that clinicians will likely incorporate such considerations on their own, although to a varying degree. Making the practice more uniform by providing more specific normative guidance, for example, making more specific the importance of retention of information for some types of research scenarios, may be an important way of increasing the reliability of capacity judgments.

Dr. Scott Kim was supported by NIH R01-MH075023. Dr. Palmer was supported by NIA R01-AG028827. Dr. Karlawish was supported by the Marian S. Ware Alzheimer Program. Dr. Myra Kim was supported by NIA grant 1 RO1 AG029550 (September 15,
Neuropsychological Correlates of Capacity Determinations in AD

2007—June 30, 2011) and NIMH grant R01 MH075023 (September 1, 2009—August 31, 2010).

Dr. Appelbaum received royalties from the publication of Professional Manual and Software, The MacArthur Competence Assessment Tool for Clinical Research (MacCAT-CR); is funded by NIA grant 1 R01 AG029550 (April 1, 2008—June 30, 2011), NCRR grant 1 U1L RR024156-01 (September 30, 2006—June 30, 2016), NHGRI grant 1P20HG005535-01 (April 1, 2010—March 31, 2013) and the Robert Wood Johnson Foundation’s Program in Public Health and Law; and was recently supported by NIMH grant R01 MH075023 (March 1, 2008—August 31, 2010) and NIA grant 1 R01 AG027986 (September 1, 2007—June 30, 2011).

Dr. Karlawish was site principal investigator for a NIA-Pfizer—sponsored clinical trial of a drug for persons with Alzheimer disease and was supported by grants P30-AG01024 (July 1, 2011—June 30, 2016), R01-NS065087-01 (September 20, 2009—August 31, 2012), and NINDS P50-NS053488-01 (June 1, 2007—May 31, 2012) and received the Robert Wood Johnson Foundation Investigator Award in Health Policy Research (September 1, 2009—August 31, 2014). He received royalties from the publication of the book “Treating Dementia: Do We Have a Pill for That?” and from a license on an integrated neurodegenerative disease database developed at the University of Pennsylvania. Dr. Scott Kim received royalties from the publication of the book “Evaluation of Capacity to Consent to Treatment and Research,” is funded by NIMH grant R01-MH075023 (September 1, 2005—August 31, 2010), NIA grants R01-AG029550 (September 15, 2007—June 30, 2011) and R01 AG028827 (September 1, 2006—June 30, 2009), and the Greenwall Foundation (July 1, 2006—June 30, 2009).

References

